Transverse free vibration of Euler-Bernoulli beam with pre-axial pressure resting on a variable Pasternak elastic foundation under arbitrary boundary conditions
نویسندگان
چکیده
منابع مشابه
Nonlinear Vibration Analysis of an Euler-Bernoulli Beam Resting on a Nonlinear Elastic Foundation under Compressive Axial Force
This paper studies the nonlinear vibration analysis of a simply supported Euler-Bernoulli beam resting on a nonlinear elastic foundation under compressive axial load using nonlinear normal modes concept in the case of three-to-one (3:1) internal resonance. The beam’s governing nonlinear PDE of motion and also its boundary conditions are derived and then solved using the method of Multiple Time ...
متن کاملSemi-analytical Approach for Free Vibration Analysis of Variable Cross-Section Beams Resting on Elastic Foundation and under Axial Force
in this paper, free vibration of an Euler-Bernoulli beam with variable cross-section resting on elastic foundation and under axial tensile force is considered. Beam’s constant height and exponentially varying width yields variable cross-section. The problem is handled for three different boundary conditions: clamped-clamped, simply supported-simply supported and clamp-free beams. First, the equ...
متن کاملSpectrally formulated finite element for vibration analysis of an Euler-Bernoulli beam on Pasternak foundation
In this article, vibration analysis of an Euler-Bernoulli beam resting on a Pasternak-type foundation is studied. The governing equation is solved by using a spectral finite element model (SFEM). The solution involves calculating wave and time responses of the beam. The Fast Fourier Transform function is used for temporal discretization of the governing partial differential equation into a se...
متن کاملStability Analysis of Non-Local Euler-Bernoulli Beam with Exponentially Varying Cross-Section Resting on Winkler-Pasternak Foundation
In this paper, linear stability analysis of non-prismatic beam resting on uniform Winkler-Pasternak elastic foundation is carried out based on Eringen's non-local elasticity theory. In the context of small displacement, the governing differential equation and the related boundary conditions are obtained via the energy principle. It is also assumed that the width of rectangle cross-section varie...
متن کاملAxial and Transverse Vibration of SWBNNT System Coupled Pasternak Foundation Under a Moving Nanoparticle Using Timoshenko Beam Theory
In this study, a semi analytical method for transverse and axial vibration of single-walled boron nitride nanotube (SWBNNT) under moving a nanoparticle is presented. The surrounding elastic medium as Pasternak foundation and surface stress effect are included in the formulations of the proposed model. Using Timoshenko beam theory (TBT), Hamilton’s principle and nonlocal piezoelasticity theory, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Latin American Journal of Solids and Structures
سال: 2020
ISSN: 1679-7825,1679-7817
DOI: 10.1590/1679-78256150